

Defense Energy Seminar Series

Quantum Security for Microgrids

Peng Zhang

Stony Brook University

9/10/2024

Stony Brook Power Lab

Our Mission

Transform today's power grids into tomorrow's **autonomic networks** and **flexible services** towards selfconfiguration, self-healing, self-optimization, and self-protection against grid changes, renewable power injections, faults, disastrous events and cyber-attacks.

Strategic Directions

AI-Enabled Resilient Power Grids

Quantum Engineered Resilient Grids

Microgrids & Networked Microgrids

Grid Resiliency, Cybersecurity, and Stability

Grid Forming and Renewable Energy Integration

FAR

REYOND

Background

■ Microgrid

 \Box Localized autonomous distribution network

- \Box Distributed energy resources (DERs), loads, storage, controllers, protection devices, etc.
- **Networked Microgrids (NMs)**
	- \Box Enhanced electric system resilience
	- \Box Reduced economic and emission costs

□ Facilitated integration and coordination of DERs

■ Secure data transmission \Box Within a microgrid

 \Box Among different microgrids

- **Existing microgrid communication:**
	- \Box Cryptographic systems
	- \Box Relies on classical public key systems
	- **Q Challenges: Vulnerable to attacks from quantum computers**

• Diffie-Hellman key exchange (DH) • Rivest-Shamir-Adleman (RSA)

Mathematical assumptions:

- Discrete logarithm problem
- Factoring problem

Outline

- **n** Introduction
- **Quantum Communication**
	- **Quantum Bit**
	- Quantum Key Distribution
	- Decoy-State BB84 QKD Protocol
	- **OKD** Simulator
- **n** Quantum-Secure Microgrid
- **n** Quantum-Secure Networked Microgrids
- **Conclusion and Future Work**

Quantum Bit

- Classical binary bit \Box Either o or 1
- Quantum bit, or "qubit"
	- \Box A two-state quantum-mechanical system
	- \Box Coherent superposition of both states simultaneously

The superposition state is:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

where $^{2} + |\beta|^{2} = 1$

- **Implementation of qubits**
	- \Box Polarization of a single photon
		- \triangleright Horizontal polarization (Z basis)
		- \triangleright Diagonal polarization (X basis)

Qubit

Photon

- Sender and receiver:
- § Same basis:
- \checkmark Same result
- Different bases:
- ü Different results

FAR BEYOND

FAR

REYOND

Quantum Key Distribution

- The general setting of a QKD system
	- \Box Quantum channel: Transmit quantum states
	- \Box Classical channel: Post processing, encryption and authentication

The general setting of a QKD system.

• The unique property

 \Box Measuring an unknown qubit will change that state

 \Box The two parties can detect the occurrence of an eavesdropper who is trying to gain knowledge of the keys

The generated keys will be theoretically secure.

6

FAR

Decoy-State BB84 QKD Protocol

7

■ QKD protocols

 \Box BB84, decoy-state, six-state, Ekert91, BBM92, etc.

- **Decoy-state BB84 QKD protocol**
	- \Box Preparation, measurement, basis reconciliation, raw key generation, error estimation, error correction, error verification, and privacy **H/V Basis** amplification

Outline

- Introduction
- **Quantum Communication**
- Quantum-Secure Microgrid
	- **Literature Review**
	- **OSM** Architecture
	- **OSM Testing Environment**
	- **Experimental Results**
- 1. Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, "Quantum-secure microgrid," *IEEE Transactions on Power Systems*, vol. 36, no. 2, pp. 1250-1263, 2021.
- pp. 66-73, 2021. 2. Z. Tang, P. Zhang, and W. O. Krawec, "A quantum leap in microgrids security: The prospects of quantum-secure microgrids," *IEEE Electrification Magazine*, vol. 9, no. 1,
- Quantum-Secure Networked Microgrids
- Programmable Quantum Networked Microgrids
- Conclusion and Future Work

Microgrid control center (MGCC):

- [■] Collect data from different loads through classical communication
- Send control signals to local controller(s) through quantum communication
- The quantum keys are stored in key pool(s)

Local controller(s):

- Battery: P-Q control
- Receive control signals from MGCC

QSM Architecture (1/2)

FAR BEYOND

QKD-enabled quantum-secure microgrid architecture. **9** and $\frac{9}{9}$

QSM Architecture (2/2)

The key pool sharing (KPS) strategy:

- **•** Multiple quantum channels
- **Separate key pools**
- Key pools can share keys with each other

An example of the KPS strategy.

FAR BEYOND

QSM Testing Environment (1/2)

**FAR
BEYOND**

High-level design of the testbed.

FAR

BEYOND

QSM Testing Environment (2/2)

One-line diagram of the microgrid model.

Network connection of the main components in the RTDS and a flow chart of the algorithm running in the MGCC.

Microgrid modeling:

- § A 5.5 MW diesel generator
- § A 1.74 MW PV system
- A 2 MW doubly-fed induction generator wind turbine system
- A lithium-ion battery storage
- § ……

' QKD-based microgrid communication network:

- **MGCC:** listening and sending
- Once a packet is received by MGCC, a certain number of key bits are consumed in the key pool.
- Key bits are generated continuously in the key pool.

Experimental Results (1/7)

- A speed larger than the key generation speed can result in the exhaustion of key bits in a key pool, eventually causing the failure of data communication.
- Wireshark: monitor the traffic
	- \Box The data transmission speed has a large impact on the QKD-based microgrid.
	- \Box The larger the data transmission speed, the sooner the quantum bits will be consumed.

Case 1: Effect of data transmission speed

Traffic monitoring under different data transmission speeds.

FAR REYOND

 \star Stony Brook University

Experimental Results (2/7)

Case 2: Baseline test

 \star Stony Brook University

The effectiveness of the communication

The microgrid performance before and after the communication starts to work during grid-connected mode.

The microgrid performance during islanding mode.

- The storage responds to the change of loads due to the communication.
- The balance of the total power generation and the sum of the loads can be maintained.

**FAR
BEYOND**

Experimental Results (3/7)

15

Experimental Results (4/7)

 \star Stony Brook University

 $\begin{matrix} \star \end{matrix}$ Stony Brook University

Experimental Results (5/7)

Case 5: Key generation speed

**FAR
BEYOND**

Outline

- Introduction
- **Quantum Communication**
- Quantum-Secure Microgrid
- **n** Quantum-Secure Networked Microgrids
	- **OSNMs** Architecture
	- **OSNMs** Testing Environment
	- **Experimental Results**
- ' *Power and Energy Society General Meeting*, Montreal, 1. Z. Tang, Y. Qin, Z. Jiang, W. O. Krawec, and P. Zhang, "Quantum-secure networked microgrids," in *IEEE* Quebec, Canada, Aug. 2020. **Best Paper Award.**
- Programmable Quantum Networked Microgrids
- Conclusion and Future Work

QSNMs Architecture

Microgrid control center (MGCC):

- Collect data from different loads through classical communication
- Send control signals to local controller(s) through quantum communication
- Send and receive control signals to and from other MGCCs Local controller(s):
- Receive control signals from MGCC

FAR BEYOND

An overview of the QKD-enabled quantum-secure NMs communication architecture.

The TLKPS Strategy

The two-level key pool sharing (TLKPS) strategy:

- When the # of bits in KPij is below a threshold:
	- \Box If there is an intermediate KP: use the first level of TLKPS strategy;
	- \Box If there is no intermediate KP: use the second level of TLKPS strategy.

Illustration of the TLKPS strategy.

QSNMs Testing Environment (1/3)

Testbed setup for quantum-secure NMs in RTDS.

High level design:

- Microgrid model is developed and compiled in RSCAD.
- **Measurements from the RTDS are transmitted through a GTNETx2 card and are sent to** the MGCC via a communication network.
- MGCCs: run on a remote server.
- For each microgrid, two GTNETx2 cards are used:

FAR REYOND

- \Box GTNETx2 card #1: used to receive signals from MGCC and to send them to the RTDS.
- \Box GTNETx2 card #2: used to transmit data from the RTDS to the MGCC.

QSNMs Testing Environment (2/3)

Network topology for the QKD-enabled quantum-secure NMs.

- User Datagram Protocol (UDP): IP & port
- Separate QKD algorithms & separate KPs
- Key bits are continuously generated in each KP with a different speed.
- When there is a need to use keys, a certain # of bits are consumed from the corresponding KP.

 $\begin{array}{|c|c|}\n\hline\n\end{array}$ Stony Brook University

QSNMs Testing Environment (3/3)

NMs modeling:

- **•** Three microgrids are interconnected with each other.
	- \Box Two 5.5 MW diesel generator
	- \Box Two 1.74 MW PV system
	- \Box A 2 MW doubly-fed induction generator wind turbine system
	- \Box Two lithium-ion battery storage

FAR BEYOND

One-line diagram of the NMs model.

Experimental Results (1/2)

Impact of cyberattacks on the microgrid:

- The real power reference of the P-Q control for the storage at Bus 2 was changed from the initial value, o, to -6 MW at time t=16s during the islanded mode.
	- \Box 1) The magnitude of voltage gradually decreases.
	- \Box 2) The frequency also decreases.
	- \Box 3) At time t=59s, the system eventually collapses.
- **•** If QKD is employed: impossible to break the encryption or co break the energy priori of the Voltage response of bus 1 with and without QKD.
authentication.

FAR REYOND

Experimental Results (2/2)

Comparison results of the numbers of key bits in KPAA, KPAB and KPAC with and without TLKPS when only the quantum channel between MG A and MG C is attacked. Effectiveness of TLKPS:

- e_{mis} for KP_{AC} is 8×10^{-4} to simulate a strong attack.
- e_{mis} for other KPs is 5×10^{-4} to simulate a weak attack.
- Threshold: 10,000
	- \Box 1) Without TLKPS, there is a shortage of key bits in KP_{AC} .
	- \Box 2) With TLKPS, the shortage issues of KP_{AC} are well addressed.

FAR BEYOND

Future Work

- 1. Experimental Demonstration of QKD in Microgrids
- 2. Novel Practical QKD Protocols for Microgrids
- 3. Software-Defined Quantum Microgrid

**FAR
BEYOND**